检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《工业工程与管理》2012年第1期70-74,83,共6页Industrial Engineering and Management
基 金:国家自然科学基金重点项目(70931004);国家自然科学基金资助项目(71002105)
摘 要:将IG(Information Gain)方法引入高维复杂产品质量特性识别,根据复杂产品制造过程的特点,将产品样本数据集中质量特性与样本质量类别建立联系,构建基于IG的相关性识别模型判别两者之间相关性及质量特性的有用性,从而去掉原始样本数据集中的弱相关特征及冗余特征,识别出对于产品质量具有直接关键影响的关键质量特性。算例结果表明,该方法可以比较有效消除在原始样本数据集中的冗余和不相关特征,适合用于高维复杂产品关键质量特性识别。The Information Gain (IG) Methodology is introduced into the identification of CTQ in the high dimensional complex products. According to the characteristics of the manufacturing process, the relationship between the quality characteristics and the class of each product sample is constructed. Then a model is structured based on IG methodology to identify the correlations between the mentioned two elements, and the service ability of the quality characteristics so as to remove the irrelevant and useless characteristics from the original sample dataset, and identify the CTQ, which have direct influence on the product quality. The experimental result indicates that the proposed methodology can eliminate the useless and irrelevant characteristics from the original dataset, and thus achieve the identification of the complex products' CTQ effectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145