检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王涛[1] 王洋洋[1] 郭长娜[1] 张继华[1]
机构地区:[1]辽宁工程技术大学电气控制工程学院,辽宁葫芦岛125105
出 处:《传感技术学报》2012年第1期119-123,共5页Chinese Journal of Sensors and Actuators
基 金:辽宁教育厅高等学校科研计划项目(2009A351)
摘 要:煤矿的安全事故中有80%以上为瓦斯事故,为了更加准确的预测瓦斯涌出量,使得煤矿安全进一步得到保障,采用足够的具有代表性的瓦斯检测数据作为样本,利用QGA算法优化RBF神经网络的参数,建立了瓦斯涌出量的预测模型,并使用MATLAB进行仿真研究。结果表明,经过优化后的预测模型较单一的RBF网络模型有更好的预测精度,可以为煤矿瓦斯防治提供理论依据。Safe accidents in coal mine are aroused more than 80 percent by the excess of gas. In order to make gas emission quantity forecasting result more accurate and guarantee the safety of coal mine, detecting sufficient and typical gas data are collected as samples in this paper. The quantum genetic algorithm is adopted to optimize the pa- rameters of Radial Basis Function neural networks, and the forecasting model used for carrying out the gas emission quantity forecasting is established. The simulating result obtained by using Matlab indicates the optimized forecasting model has an more accuracy forecasting result than the forecasting model based on RBF neural networks. A theoretical basis is provided for the prevention and control of gas accidents in coal mine.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.32.70