检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116
出 处:《计算机工程与设计》2012年第3期1132-1135,共4页Computer Engineering and Design
摘 要:针对基于粒子群的模糊聚类算法以隶属度编码时对噪音敏感,以及处理样本数小于样本维数的数据集效果较差等问题,通过改进其中的模糊聚类约束方法,提出一种改进的基于粒子群的模糊聚类方法。当样本对各类的隶属度之和不为1时,新方法在粒子群优化得出的隶属度基础上,根据样本与各类之间的距离对隶属度进一步分配,以使隶属度满足模糊聚类约束条件。新方法显著地改善了在隶属度编码下使用粒子群进行模糊聚类的效果,并通过典型的数据集进行了验证。While particle swarm optimization (PSO) based fuzzy clustering algorithm is encoded by membership, the algorithm is less effective and tenderness to noise when processing the data set that the number of samples is less than the dimensions, so a new constraint strategy for fuzzy clustering is introduced by improving the constraint strategy of fuzzy clustering. When the sum of membership between a sample and all clusters is not one, after considering the membership obtained by PSO, the strategy further distributes the memberships on the basis of the distance between the sample and cluster centers, then making them meet the constraints of fuzzy clustering. The new strategy improves the clustering effect of the PSO based fuzzy clustering algorithm that encoded in membership significantly, and is verified by typical data sets.
关 键 词:模糊分类 随机优化算法 隶属度改进 约束方法 C均值聚类算法
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145