非光滑半无限多目标规划的最优性及混合对偶  

Optimality Condition and Duality for Nonsmooth Multiobjective Semi-infinite Programming Problems

在线阅读下载全文

作  者:万轩[1] 赵克全[1] 

机构地区:[1]重庆师范大学数学学院,重庆400047

出  处:《重庆师范大学学报(自然科学版)》2012年第2期7-11,共5页Journal of Chongqing Normal University:Natural Science

基  金:重庆市自然科学基金项目(No.2011BA0030);重庆市科委运筹学与系统工程重点实验室项目(No.CSTC2011KLORSE02);重庆市教委科技项目(No.KJ110625)

摘  要:本文研究了非光滑半无限多目标规划(NSIMP)的最优性条件及混合型对偶。首先,在Fritz-John必要条件的基础上建立了Karush-Kuhn-Tucker必要条件,即设为(NSIMP)的有效解和gj,j∈()为关于η的严格不变凸函数,则存在0,μj≥0,j∈J且ūj≠0对有限多个j∈J,使得(4)-(6)成立。然后建立了Karush-Kuhn-Tucker充分条件,即设x为(NSIMP)的可行解,在x处满足Karush-Kuhn-Tucker条件(4)-(6)式,fi,i∈I是关于η的不变凸函数,gj,j∈J()是关于相同η的严格不变凸函数,则为(NSIMP)的有效解。最后在不变凸性条件下,证明了混合对偶模型的弱对偶,强对偶和逆对偶定理。本文的主要结果推广并改进了一些已有的结论。In this paper, we investigated the optimality condition and mixed duality for nonsmooth semi-infinite muhiobjective program (NSIMP). Firstly, we proved Karush-Kuhn-Tucker necessary on the basis of the Fritz-John necessary condition, i. e. , let x^- be an effi- cient solution of the problem (NS1MP) and gi ,J e (x^-) are strictly invex with respect to η. Then there exist Aλ^-0 ,μj ≥0, Aj ∈ J, and for finitely many j ∈ J such that (4) - ( 6 ) hold. Furthermore, we proved Karush-Kuhn-Tucker sufficient conditions, i.e. , let x^- be feasible in (NSIMP), Karush-Kuhn-Tucker conditions (4) - (6) are satisfied at x^-, fl, i e I are invex with respect to η, g/,J e J(x^-) are strictly invex with respect to the same η. Then x^- is an efficient solution of the problem (NSIMP). Finally, weak dual theorem, strong dual theorem and converse dual theorem for nonsmooth semi-infinite program involving in vexity are established. Our results im- prove and generalize some known results.

关 键 词:非光滑半无限多目标规划 最优性条件 混合型对偶 

分 类 号:O221.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象