检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Ming YU JunZhi TAN Min ZHANG JianWei
机构地区:[1]School oflnformation and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China [2]State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China [3]Department oflnformatics, University of Hamburg, Hamburg, D-22527, Germany
出 处:《Chinese Science Bulletin》2012年第10期1209-1216,共8页
基 金:the National Natural Science Foundation of China (60775053,61075102);in part by the Beijing Natural Science Foundation (4102063,4122084)
摘 要:The neural-based approaches inspired by biological neural mechanisms of locomotion are becoming increasingly popular in robot control.This paper investigates a systematic method to formulate a Central Pattern Generator(CPG) based control model for mul-timodal swimming of a multi-articulated robotic fish with flexible pectoral fins.A CPG network is created to yield diverse swim-ming in three dimensions by coupling a set of nonlinear neural oscillators using nearest-neighbor interactions.In particular,a sensitivity analysis of characteristic parameters and a stability proof of the CPG network are given.Through the coordinated con-trol of the joint CPG,caudal fin CPG,and pectoral fin CPG,a diversity of swimming modes are defined and successfully imple-mented.The latest results obtained demonstrate the effectiveness of the proposed method.It is also confirmed that the CPG-based swimming control exhibits better dynamic invariability in preserving rhythm than the conventional body wave method.The neural-based approaches inspired by biological neural mechanisms of locomotion are becoming increasingly popular in robot control. This paper investigates a systematic method to formulate a Central Pattern Generator (CPG) based control model for multimodal swimming of a multi-articulated robotic fish with flexible pectoral fins. A CPG network is created to yield diverse swimming in three dimensions by coupling a set of nonlinear neural oscillators using nearest-neighbor interactions. In particular, a sensitivity analysis of characteristic parameters and a stability proof of the CPG network are given. Through the coordinated control of the joint CPG, caudal fin CPG, and pectoral fin CPG, a diversity of swimming modes are defined and successfully implemented. The latest results obtained demonstrate the effectiveness of the proposed method. It is also confirmed that the CPG-based swimming control exhibits better dynamic invariability in preserving rhythm than the conventional body wave method.
关 键 词:网络控制 多式联运 机器鱼 中央 游泳 胸鳍 人民政府 神经机制
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.77