检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程学院自动化系,陕西西安710025
出 处:《计算机测量与控制》2012年第3期774-776,796,共4页Computer Measurement &Control
基 金:国防预研(103030203)
摘 要:针对实际的应用中车载航位推算系统的模型参数、噪声的统计特性不确定性,影响估计效果,提出了车载航位推算的模糊自适应卡尔曼滤波模型及其滤波算法;该方法通过监视理论残差与实际残差的比值是否接近1,应用模糊推理系统不断地调整量测噪声协方差的加权,对自适应卡尔曼滤波的量测噪声协方差进行递推修正,通过该算法来抑制噪声对精度的影响,进而提高系统的导航精度;仿真结果表明,这种算法能够有效地提高系统的精度,是一种比较理想的车载DR导航滤波方法。For the practical application of vehicle dead reckoning system model parameters, noise statistics cannot he fully estimated, proposed vehicle dead reckoning model of the fuzzy adaptive Kalman filter and its filtering algorithm. This method is mainly used in vehicle Dead Reckoning system to deal with time varied statistic of measurement noise in different working conditions. By monitoring if the ratio be- tween filter residual and actual residual is near 1, this algorithm modifies recursively the measurement noise covariance of Kalman Filtering online using the Fuzzy Inference System (FIS) to make the covariance close to real measurement covariance gradually. Accordingly the kal- man filter performs optimally and the accuracy of the navigation system is improved. Simulation results show that the algorithm can improve system accuracy; it is an ideal vehicle DR navigation filter algorithm
分 类 号:TN967.2[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63