检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱新建[1,3] 薛凤凤[2] 山拜·达拉拜[1] 廖畅[1]
机构地区:[1]新疆大学信息科学与工程学院,智能信号处理实验室,乌鲁木齐830046 [2]空军工程大学电讯工程学院,西安710077 [3]中国人民解放军68203部队
出 处:《计算机工程与应用》2012年第10期29-33,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.60971130)
摘 要:针对传统的聚类算法存在对初始化值敏感和容易陷入局部极值等缺点,提出一种确定聚类中心数目和位置的方法。用每一个粒子表示一组聚类中心,采用云理论改造粒子群算法,从而提高粒子群算法的性能,以便搜索到更合理的聚类中心完成聚类划分。实验结果表明该算法很好克服了这两个缺点,获得了稳定性好和更紧凑的聚类效果。The traditional clustering algorithms have many shortcomings, such as sensitive to initial value and vulner-able to local minima. The method to determine the number and location of cluster center is proposed. Cloud theory is used to transform particle swarm optimization to improve the performance of PSO. This methed can search more reasonable clustering center. Experimental results show that the algorithm has solved these two drawbacks and obtained a good stability and a better clustering result.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30