检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李绍龙[1] 张正娣[1] 吴天一[1,2] 毕勤胜[1]
机构地区:[1]江苏大学理学院,镇江212013 [2]镇江船艇学院基础部,镇江212013
出 处:《物理学报》2012年第6期58-67,共10页Acta Physica Sinica
基 金:国家自然科学基金(批准号:10972091;20976075);江苏大学高级人才基金(批准号:09JDG011)资助的课题~~
摘 要:探讨了具有分段线性特性的广义BVP电路系统随参数变化的复杂动力学演化过程.其非光滑分界面将相空间划分成不同的区域,分析了各区域中平衡点的稳定性,得到其相应的简单分岔和Hopf分岔的临界条件.给出了不同分界面处广义Jacobian矩阵特征值随辅助参数变化的分布情况,讨论了分界面处系统可能存在的分岔行为,指出当广义特征值穿越虚轴时可能引起Hopf分岔,导致系统由周期振荡转变为概周期振荡,而当出现零特征值时则导致系统的振荡在不同平衡点之间转换.针对系统的两种典型振荡行为,结合数值模拟验证了理论分析的结果.The complicated dynamical evolution of a generalized BVP circuit system with piecewise linear characteristics is explored.The phase space is divided into different types of regions by the nonsmooth boundaries.In each region,the stabilities of the equilibrium points are investigated,from which the critical conditions related to simple bifurcations as well as Hopf bifurcations are obtained.By employing the analysis of the distribution of the eigenvalues of the generalized Jacobian matrix,the bifurcation behaviors related to the nonsmooth boundaries are explored in detail.It is pointed out that when pure imaginary eigenvalues associated with the generalized Jacobian matrix appear,the Hopf bifurcation may take place,leading the system to change from periodic motion into the quasi-periodic oscillation,while when zero eigenvalue occurs,it may lead the system to oscillate between different equilibrium points.Combined with the numerical simulations,two typical oscillation behaviors of the system verify the theoretical results.
关 键 词:广义BVP振子 非光滑分岔 广义Jacobian矩阵 HOPF分岔
分 类 号:TN401[电子电信—微电子学与固体电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30