基于神经网络的轧制力模型参数辨识  被引量:6

IDENTIFICATION OF PARAMETERS OF NERVE NETWORK BASED ROLLING MODEL

在线阅读下载全文

作  者:王秀梅[1] 王国栋[1] 刘相华 邹天来[2] 张弓[2] 李洪斌[2] 

机构地区:[1]东北大学 [2]本溪钢铁公司

出  处:《钢铁研究》2000年第1期44-47,共4页Research on Iron and Steel

摘  要:为了提高热连轧轧制力预设定值的精度 ,提出一种新的轧制力模型参数辨识方法。利用人工神经网络对以往的大量生产数据进行训练、预测 ,将预测结果结合轧制力模型 ,对轧制力模型中的温度相关系数m1 、变形速度相关系数m3进行辨识。现场生产实践表明 ,采用辨识后的模型进行轧制力预设定 ,带钢头部厚度精度有明显提高。对于象本钢热连轧厂这样的老企业 。In order to raise the accuracy of the preset rolling force of the continuous hot rolling mill a new method identifying the parameters from the rolling force model has been put for ward,in which an artificial nerve network is utilized to train and predict a great volume of the past production data and then use the predicted outcome to identify the temperature related coefficiency m 1 and the deformation speed related coefficiency m 3 in combination with the rolling model. production practice demonstrates that the gauge accuracy at the strip head can be drastically raised as long as the identified model is used to preset the rolling force. A greater feasibility of on-line application of the new method exists for the old enterprises just like the Continuous Hot Rolling Mill of Benxi Iron & Steel Corp.

关 键 词:热连轧 轧制力 数学模型 神经网络 参数辨识 

分 类 号:TG335.11[金属学及工艺—金属压力加工] TG335.13

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象