检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连海洋大学理学院 [2]沈阳师范大学数学与系统科学学院
出 处:《上海理工大学学报》2012年第1期56-58,共3页Journal of University of Shanghai For Science and Technology
摘 要:依据经典微分几何空间曲线的基本理论与特征,采用一种新的活动标架——三维欧氏空间中的球面Frenet标架,并利用三维曲线的Frenet标架场,对三维欧式空间中的球面曲线进行研究,得到了在三维空间E^3下的贝特朗、曼海姆及从切等特殊曲线,给出了一个由曲线的曲率与挠率的一阶常微分方程描述的三维欧氏空间中的球面曲线,得出了比对应微分方程阶数更低的条件,且大大简化了计算过程.Eased on the basic theory and characteristics of space curves in classical differential geometry, a new kind of moving construction the spherical Frenet construction of this kind were finany obtained in 3-D Euclidean space, as well as the 3-D curves Frenet construction field were introduced to inspect the spherical curves in 3-D Euclidean space. Bertrand, Malmheim, rectifying curves, and special curves of this kind were finally obtained in the 3-D E^3 space,giving spherical curves in 3-D Euclidean space which can be described by first-order ordinary differential equations with respect to curve's curvature and torsion, and producing a low-level curve representation for the corresponding differential equation. The new characteristics of spherical curves were verified and the calculation process was simplified.
关 键 词:球面曲线 曲率 挠率 球面Frenet公式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222