检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LU Xian 1 ,SHANG Yun 1,& LU RuQian 1,2 1 Institute of Mathematics,Academy of Mathematics and Systems Science,Beijing 100190,China 2 Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China
出 处:《Science China Mathematics》2012年第4期841-850,共10页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 60736011, 61073023 and 60603002);the National Basic Research Program of China (973 Program) (Grant No. 2009CB320701)
摘 要:We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices).In detail,for an idempo- tent element of a given QMV algebra,if it commutes with every element of the QMV algebra,it can induce a direct product decomposition of the QMV algebra.At the same time,we introduce the commutant C(S) of a set S in a QMV algebra,and prove that when S consists of idempotent elements,C(S) is a subalgebra of the QMV algebra.This also generalizes the cases of orthomodular lattices.We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices). In detail, for an idempotent element of a given QMV algebra, if it commutes with every element of the QMV algebra, it can induce a direct product decomposition of the QMV algebra. At the same time, we introduce the commutant C(S) of a set S in a QMV algebra, and prove that when S consists of idempotent elements, C(S) is a subalgebra of the QMV algebra. This also generalizes the cases of orthomodular lattices.
关 键 词:QMV algebra COMMUTATIVITY IDEMPOTENT decomposition theorem
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185