检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟朝艳[1]
机构地区:[1]曲靖师范学院数学与信息科学学院,云南曲靖655011
出 处:《西南大学学报(自然科学版)》2012年第3期19-22,共4页Journal of Southwest University(Natural Science Edition)
基 金:云南省教育厅科学研究基金资助项目(08C0179)
摘 要:Lundberg-Cramer经典保险风险模型及其推广后的许多风险模型在研究破产概率时都假定破产时刻为盈余过程首次取负值的时刻.但在保险实务中,当盈余低于容忍最小收益时,保险公司就很难再经营下去或需要调整经营策略.在定义盈余低于容忍最小收益时的时刻为破产时刻的基础上,建立一个带干扰且保费随机收取的双COX风险模型,利用鞅论方法,研究其最终破产概率的性质及Lundberg型不等式.The Lundberg-Cramer classical risk model and some of its extendable risk models assume that the time of ruin is the surplus process which takes a negative value for the first time when they research ruin probability. However, in practice, insurance agent will be placed in difficult circumstances or need to adjust its business strategy when its surplus is under a limit. The first literature reference defines the limit as the tolerance smallest income. In this paper, a double COX risk model with perturbation and stochastic premium is established based on defining the time of ruin as the time when the surplus process is under the tolerance smallest income. The Lundberg's inequality and some quality of final ruin probability in this new model are obtained through the method of martingale.
分 类 号:O211.67[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.81.40