检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张平[1] 方洋旺[1] 朱剑辉[1] 乔治军[2]
机构地区:[1]空军工程大学工程学院 [2]中国人民解放军95856部队
出 处:《电光与控制》2012年第4期26-30,共5页Electronics Optics & Control
摘 要:针对单机对目标被动定位跟踪不具有完全可观测性,建立了双机协同探测定位跟踪模型,利用双机探测到的目标方位角和俯仰角,结合非线性滤波算法估计出目标的位置和速度参数。为解决传统的非线性滤波误差比较大、容易发散的问题,引入无迹卡尔曼滤波(UKF)算法。仿真实验表明,与扩展卡尔曼滤波相比较,UKF能更好地解决量测方程的非线性问题,滤波效果更好。Passive target locating and tracking by single airborne observer may not show complete observability under some special conditions. To solve the problem, a mathematical model for target tracking by dual aircraft cooperation was established. With the azimuth and pitch angle of the target measured by the dual aircrafts, nonlinear filtering algorithm was used to estimate the position and velocity of the target. To solve the problems of traditional nonlinear filtering of large error and liable to diverge, the novel algorithm of Unscented Kalman Filter (UKF) was introduced in this paper. Simulation results show that: compared with Extended Kalman Filter( EKF), UKF is superior in solving the nonlinear system problem and has better filtering effects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145