检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学工商管理学院,四川成都610065 [2]四川省电力公司通信自动化中心,四川成都610041
出 处:《电力自动化设备》2012年第4期88-91,共4页Electric Power Automation Equipment
摘 要:为提高母线负荷预测的准确性,提出一种基于小波分解和支持向量机的母线负荷预测方法。该方法利用小波分解算法将目标负荷序列分解为若干个不同频率的子序列,通过分析各个序列的特征规律,构造不同的支持向量机模型对各分量分别进行预测,再将各分量预测值进行重构得到最终预测值。对某一区域内15条母线进行预测,采用平均日母线负荷准确率进行评价。与单独使用支持向量机方法相比,应用所提方法提高了962点的预测效果,占总预测点数的66.8%;全系统的准确率由93.5%提高到了95.1%。A bus load forecasting model based on wavelet transform and SVM(Support Vector Machine) is proposed to improve its accuracy,which applies the wavelet transform to decompose the target bus load sequence into the components of different frequencies,analyzes their characteristics to build SVM model for each component,forecasts separately the load of each component,and reconstructs them to obtain the final forecast. The loads of 15 buses in an area are studied and the average daily bus load accuracy is used as the index for comparison. Compared with the model only based on SVM,66.8 % of point forecasting accuracies,i.e. 962 points,are improved,and the overall forecasting accuracy increases from 93.5 % to 95.1%.
分 类 号:TM715.1[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3