检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191
出 处:《智能系统学报》2012年第1期61-68,共8页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60875072);北京市自然科学基金资助项目(4112035);中澳国际合作项目(2007DFA11530)
摘 要:针对动态成像条件下运动目标检测的难点问题,提出了一种将SURF特征和Mean shift图像分割相结合的高精度运动目标检测方法.首先利用SURF特征进行图像配准,以补偿背景图像的运动漂移;然后利用差分求积二值化和形态学滤波方法检测出运动目标区域;最后结合Mean shift图像分割方法实现运动目标的精确检测.通过一系列实拍视频的运动目标检测实验验证了此算法的有效性和可行性.实验结果表明,此方法能精确检测出动态成像条件下所形成的动态背景中的运动目标,而且具有良好的鲁棒性和抗噪能力,对于光照条件和亮度变化等不利因素也有较强的适应能力.Taking into account the difficulty of moving-object detection with a dynamic background caused by camera motion,a new method was proposed based on speeded-up robust features(SURF) and Mean shift.First,the image registration based on SURF was applied to compensate the background motion,and then binarization of quadrature by difference method and morphological filters was carried out to detect the moving-object's area so that the accurate detection and segmentation of the moving object was accomplished with Mean shift.Finally,the effectiveness and satisfactory performance were validated through a series of experiments of dynamic videos.The results indicate that the proposed algorithm is characterized by high precision,low false detection,and strong robustness to noises,and thus can be extended to application in practical engineering.
关 键 词:SURF 图像配准 MEANSHIFT 图像分割 动态背景 目标检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28