检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南工业大学理学院,郑州450001 [2]西安电子科技大学雷达信号处理国家重点实验室,西安710071 [3]中国地质大学数学与物理学院,武汉430074
出 处:《南京大学学报(自然科学版)》2012年第2期198-205,共8页Journal of Nanjing University(Natural Science)
基 金:国家自然科学基金(61001213;61071188);国防基础预研基金(B1420110193)
摘 要:基于概率密度非参数估计的广义高斯密度(GGD)核估计和线性独立成分分析(ICA)神经网络,本文提出了一种新的非参数ICA算法,实现了对源信号分布的全盲要求.该算法直接由观测信号样本出发,对分离信号评价函数直接估计,可以只用一种灵活评价函数分离任意的杂系混合信号,并且GGD核可以根据源信号的高阶统计性质自适应的改变以适应不同的要求,从而在一定程度上解决了ICA算法中选取估计信号评价函数的问题.模拟实验说明了所提算法的性能优越性.Independent component analysis (ICA) is a typical and important blind source separation (BSS) method. It is to recover source signals which are considered statistically independent given only the outputs of a number of sensor mixed signals. How to choose a model of the score functions of the unknown source signals is a basic and important problem in most ICA algorithm. This is usually achieved based on the parametric and nonparametric density estimation approaches. Classical ICA algorithms fit parametric models for the hidden sources. Moreover, most ICA algorithms always assume that the distribution of source signals has a priori knowledge, but this is difficult to obtain in many situations. It has been realized that the unknown distributions of hidden sources can be estimated by nonparametric methods, some authors have discussed the nonparametric ICA method, but the kernel they used was fixed which made the algorithm does not robust in some conditions. How to develop unified nonparametric ICA algorithms, which enable to separate hybrid source signals including symmetric and asymmetric distributions with self-adaptive score functions, is very important. In this paper, efficient ICA algorithm based on generalized Gaussian density (GGD) kernel is proposed using a linear ICA neural network which can separate hybrid mixture of source signals which include both symmetric and asymmetric distribution sources. The proposed ICA algorithm is able to separate the hybrid mixtures of source signals using only a flexible model. Moreover, the GGD kernel can adaptively adjust its shaping and scaling parameter according to the high order statistics of the source signals. It paves the way to wider applications of ICA methods to real world signal processing. Simulations confirm the effectiveness of the proposed algorithm.
关 键 词:独立成分分析 评价函数 极大似然 非参数估计 神经网络
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28