检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001 [2]齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006
出 处:《系统工程与电子技术》2012年第4期773-777,共5页Systems Engineering and Electronics
基 金:国家自然科学基金(61100103)资助课题
摘 要:针对一类非线性时变系统在有限时间区间上的轨迹跟踪问题,提出一种新的迭代学习控制算法,该算法对系统的控制输入和初始状态同时采用闭环指数变增益迭代学习律。基于算子理论,对具有任意初始状态的系统,在该迭代学习律作用下的收敛性进行严格证明,同时给出该迭代学习算法收敛的谱半径形式的充分条件。该算法与固定增益的迭代学习控制相比较,不仅加快了收敛速度,而且还解决了指数变增益迭代学习控制要求初始状态严格重复的问题。仿真结果表明了该算法的有效性。A new learning control algorithm is presented aiming at the trajectory tracking problem realized within a limited time region for a class of nonlinear time-varying systems.The new algorithm simultaneously adopts close-loop iterative learning rule with time-varying exponential gain for both control input and initial state of systems.Using the operator theory,the convergence of systems with any initial states is strictly proven under the operation of the iterative rule.Meanwhile,a sufficient convergence condition in the spectral radius form of the learning algorithm is provided.Compared with iterative learning control with the fixed learning gain,the proposed algorithm can not only significantly enhance the convergent speed but also solve the problem that the iterative learning control with time-varying exponential gain needs the rigid repetition of initial state.Simulation results illustrate the effectiveness of the proposed algorithm.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.144.240