检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学自动化学院,南京210046 [2]东南大学复杂工程系统测量与控制教育部重点实验室,南京210096
出 处:《计算机工程》2012年第8期13-15,共3页Computer Engineering
基 金:江苏省高校自然科学基金资助项目(10KJB510014);国家青年自然科学基金资助项目(61104216;60805032);东南大学复杂工程系统测量与控制教育部重点实验室开放课题基金资助项目(2010A003);教育部博士点新教师基金资助项目(20103223120003)
摘 要:基于轨迹规划的类人机器人在合理的参数组合下可实现快速稳定的行走。为优化步行参数,提出一种基于强化学习的步行参数训练算法。对步行参数进行降阶处理,利用强化学习算法优化参数,并设置奖惩机制。在Robocup3D仿真平台上进行实验,结果证明了该算法的有效性。Aiming at optimizing walking parameters for quick and stable walking of humanoid robot based on trajectory planning method, this paper presents a walking parameters training algorithm based on reinforcement learning. By decreasing the number of walking parameters, the reinforcement learning is applied to optimize these parameters, and the reward and punishment mechanism is given. Experimental results show that the algorithm is feasible in the RoboCup3D simulation platform.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158