Mouse models of pancreatic cancer  被引量:8

Mouse models of pancreatic cancer

在线阅读下载全文

作  者:Marta Herreros-Villanueva Elizabeth Hijona Angel Cosme Luis Bujanda 

机构地区:[1]Schulze Center for Novel Therapeutics,Division of Oncology Research,Department of Medicine,Mayo Clinic,Rochester,MN 55905,United States [2]Department of Gastroenterology,Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd),University of the Basque Country,Donostia Hospital,San Sebastian 20014,Spain [3]Department of Gastroenterology,Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd),University of the Basque Country,Donostia Hospital

出  处:《World Journal of Gastroenterology》2012年第12期1286-1294,共9页世界胃肠病学杂志(英文版)

基  金:Supported by Instituto de Salud Carlos (CIBERehd)

摘  要:Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States,and potent therapeutic options are lacking.Although during the last few years there have been important advances in the understanding of the molecular events responsible for the development of pancreatic cancer,currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed.In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes.In the last few years,several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed.These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer.Genetic alterations such as activating mutations in KRas,or TGFb and/or inactivation of tumoral suppressors such as p53,INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice.These mouse models have a spectrum of pathologic changes,from pancreatic intraepithelial neoplasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system.These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches,chemopreventive and/or anticancer treatments.Here,we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in future pancreatic cancer developments.Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States, and potent therapeutic options are lacking. Although during the last few years there have been important advances in the understanding of the molecular events responsi- ble for the development of pancreatic cancer, currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed. In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes. In the last few years, several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed. These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer. Genetic alterations such as activating mutations in KRas, or TGFb and/or inactivation of tumoral suppressors such as p53, INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice. These mouse models have a spectrum of pathologic changes, from pancreatic intraepithelial neo plasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system. These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches, chemopreventive and/or anticancer treatments. Here, we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in fu- ture pancreatic cancer developments.

关 键 词:K-RAS Mouse models TRANSGENIC Pancre-atic cancer XENOGRAFTS 

分 类 号:R735.9[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象