检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学,陕西西安710038
出 处:《微特电机》2012年第4期19-21,37,共4页Small & Special Electrical Machines
摘 要:用频谱分析方法提取了无刷直流电动机的正常工作状态和几种常见的故障(位置传感器一路故障、A相绕组断路故障和驱动开关断路故障)时的特征信号,进行了诊断算法研究,提出了用改进遗传算法优化小波神经网络参数的调整过程,并用改进遗传小波神经网络对无刷直流电动机进行故障诊断。仿真结果表明,与经典遗传小波神经网络、小波神经网络和BP神经网络等方法进行比较,该方法在无刷直流电动机故障诊断中具有更快的收敛速度和更高的诊断精度。Spectral analysis was adopted to pick up characteristic signals when brushless DC motor was normal or in several general faults such as state with one breaking position sensor,one breaking phase winding or one breaking drive switch.A fault diagnosis method to supervise and diagnose faults in brushless DC motor was proposed based on a wavelet neural network with improved genetic algorithm,which was applied to find global optimization values for the network weights.The method was more effective and feasible,compared with those methods of a wavelet neural network with classical genetic algorithm,a wavelet neural network and BP neural network in the instance simulation of the fault diagnosis for brushless DC motor.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158