检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈一鸣[1] 仪明旭[1] 魏金侠[1] 陈娟[1]
出 处:《计算数学》2012年第2期195-202,共8页Mathematica Numerica Sinica
基 金:河北省自然科学基金(E2009000365)资助项目
摘 要:超奇异积分的数值算法一直是近些年来研究的重要课题.基于超奇异积分的Hadamard有限部分积分定义,本文给出了利用Legendre小波计算超奇异积分的方法.当奇异点位于区间内时,由于Legendre小波具有很好的正交性、显式表达式以及小波函数的可计算性,将区间内的奇异点变换到区间端点处,再利用区间端点处Hadamard有限部分积分的定义,进而可以计算p+1(p∈N^+)阶超奇异积分.文中最后给出的算例表明了该方法的可行性和有效性.The numerical methods of supersingular integral are always an important topic in recent years. Based on the definition of Hadamard finite-part integral of the supersingular integral, we have given a method which calculates the supersingular integral by using Legendre wavelet in this paper. When the singular point is located in the interval, as Legendre wavelet has a better orthogonality, good explicit expression and computability of the wavelet function, we can convert the singular point of interval into the endpoint of interval, and then by making use of the definition of Hadamard finite-part integral where the singular point is located at the endpoint of interval, we can compute the P+1(p∈N^+) order supersingular integral. Finally, the feasibility and validity of the method can be proved by the examples shown in the work.
关 键 词:超奇异积分 LEGENDRE小波 Hadamard有限部分积分 近似值
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222