基于混合核函数PSO-LSSVM的边坡变形预测  被引量:48

Forecasting of slope displacement based on PSO-LSSVM with mixed kernel

在线阅读下载全文

作  者:郑志成[1,2] 徐卫亚[1,2] 徐飞[1,2,3] 刘造保[1,2] 

机构地区:[1]河海大学岩土力学与堤坝工程教育部重点实验室,南京210098 [2]河海大学岩土工程科学研究所,南京210098 [3]海南省公路勘察设计院,海口570206

出  处:《岩土力学》2012年第5期1421-1426,共6页Rock and Soil Mechanics

基  金:国家科技支撑计划(No.2008BAB29B01);江苏省普通高校研究生科研创新计划(No.CX09B-158Z);国家自然科学基金项目(No.50909038)

摘  要:支持向量机(SVM)的核函数类型和超参数对边坡位移时序预测的精度有重要影响。鉴于局部核函数学习能力强、泛化性能弱,而全局核函数泛化性能强、学习能力弱的矛盾,通过综合两类核函数各自优点构造了基于全局多项式核和高斯核的混合核函数,并引入粒子群算法(PSO)对最小二乘支持向量机(LSSVM)超参数进行全局寻优,提出了边坡位移时序预测的混合核函数PSO-LSSVM模型。将模型应用于锦屏一级水电站左岸岩石高边坡变形预测分析,并与传统核函数支持向量机预测结果进行对比分析。结果表明,该模型较传统方法在预测精度上有了明显提高,预测结果科学可靠,在边坡位移时序预测中具有良好的实际应用价值。The kernel and the parameters of support vector machine(SVM) have a significant impact on precision of the time series prediction to slope displacement.In view of better learning capability of local kernels and better generalization capability of global kernels,the mixed kernel is constructed by a typical local kernel-radial basis function(RBF) and a typical global kernel-polynomial kernel.By use of particle swarm optimization(PSO),a new PSO-LSSVM model regression with mixed kernels is set up in this paper and applied to the left bank slope in Jinping Ⅰ Hydropower Station.Through comparing with the forecasting results of the existing SVM based on RBF,results demonstrate that the new model has great accuracy than the existing SVM with RBF only and has real application value in predicting deformations of slope.

关 键 词:边坡 边坡变形预测 最小二乘支持向量机 粒子群优化 混合核 

分 类 号:TU454[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象