检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2012年第9期19-20,35,共3页Computer Engineering
基 金:国家自然科学基金资助项目(61103113)
摘 要:根据人机交互中手势控制系统的要求,提出一种基于平均邻域最大化(ANMM)算法的静态手势识别方法。将获得的二值化图像轮廓归一化到固定的解析度,构成多维向量,使用ANMM算法对同质相邻与异质相邻向量进行训练,计算出投影方向矩阵。将样本降维处理后,计算其在降维空间内与同质相邻和异质相邻向量的距离,判别样本所属分类。实验结果证明,该方法对静态手势的识别率可达90%以上。According to the requirement of hand posture control system in the field of human machine interaction, Average Neighborhood Margin Maximization(ANMM) algorithm is applied to static hand posture and human body posture recognition. It normalizes the binary image contour into a fixed resolution, constitutes a multi-dimensional vector, uses the ANMM algorithm training the homogeneity and heterogeneity neighboring vectors, and then projection direction matrix is calculated. After reducing the dimension of the sample, calculating the distance of the adjacent homogeneity and heterogeneity vectors, the samples are classified. Results show that this algorithm has a recognition rate of 90% for the static hand posture recognition.
关 键 词:手势识别 平均邻域最大化 特征提取 相邻同质 相邻异质 降维
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145