检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阿里木·赛买提[1] 杜培军[1,2] 柳思聪[1]
机构地区:[1]中国矿业大学江苏省资源环境信息工程重点实验室,江苏徐州221116 [2]南京大学卫星测绘技术与应用国家测绘地理信息局重点实验室,南京210093
出 处:《计算机工程》2012年第9期223-225,243,共4页Computer Engineering
基 金:国家自然科学基金资助项目(40871195);江苏省自然科学基金资助项目(BK2010182)
摘 要:针对二维最大熵图像分割方法计算量大的问题,提出基于人工蜂群优化的二维最大熵图像分割算法。利用人工蜂群优化算法收敛快、避免局部最优、控制参数少等优点,将二维最大熵法最佳二维阈值视为最佳蜜源,实现基于人工蜂群优化的二维最大熵图像分割。实验结果表明,该方法的收敛速度较快、抗噪性较强。Aiming at the problem of large computing in maximum 2D entropy based image segmentation method, this paper proposes a maximum 2D entropy image segmentation algorithm based on artificial bee colony optimization. Artificial bee colony algorithm has certain advantage in convergence speed, prevents local optimization, and has few control parameters. Using these advantages, the best 2D threshold of maximum 2D entropy method is considered as nectar, and artificial bee colony optimized maximum 2D entropy method is used to segment images. Experimental result shows that, compared with other methods, constriction of this method is quicker, stability is better and resistance to the noise is stronger.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117