检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2012年第13期11-15,共5页Computer Engineering and Applications
基 金:国家重点基础研究发展规划(973)(No.613900201);空军工程大学导弹学院研究生创新基金(No.HX1112)
摘 要:在分析现有混合属性数据聚类算法存在问题的基础上,选用基于图论的松弛聚类算法作为解决问题的"基石";引入基于"Local Scale"思想的高斯核参数计算步骤,对基于图论的松弛聚类算法进行了自适应改进,并对其点对距离计算过程进行了面向混合属性的度量扩展。在上述两步改进的基础上,结合聚类集成技术,提出了一种新的混合属性数据聚类算法,并进行了实例验证,结果表明提出的算法具有较强的参数鲁棒性和较高的聚类精度。Based on the problem analysis on existing mixed data clustering algorithms, the graphbased relaxed clus tering algorithm is used as the problem solving foundation. Introduced the gaussian kernel parameter selfadapting computing step, the graphbased relaxed clustering algorithm is improved on the foundation of the "Local Scale" idea, and the points distance calculating process is extended to the mixed data clustering. Moreover, depended on the previous improved steps and cluster ensemble technology, a new mixed data clustering algorithm is proposed. Lastly, the case experiments are completed, and the results prove that the new algorithm has high robustness and good cluster precision.
关 键 词:混合属性 松弛聚类算法 自适应 聚类集成 鲁棒性
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62