温室黄瓜病虫害的叶绿素荧光光谱分析  被引量:16

Chlorophyll Fluorescence Spectrum Analysis of Greenhouse Cucumber Disease and Insect Damage

在线阅读下载全文

作  者:隋媛媛[1] 于海业[1] 张蕾[1] 罗瀚[1] 任顺[1] 赵国罡[1] 

机构地区:[1]吉林大学生物与农业工程学院,仿生工程教育部重点实验室,吉林长春130022

出  处:《光谱学与光谱分析》2012年第5期1292-1295,共4页Spectroscopy and Spectral Analysis

基  金:国家高技术研究发展计划(863计划)项目(2012AA10A506;2007AA10Z203);吉林省科技厅项目(20110217)资助

摘  要:基于叶绿素荧光光谱分析技术,从光谱形态角度出发确定了波长685nm作为健康与病虫害叶片分析的第一特征点,采用简单波段自相关选择与主成分分析方法相结合实现对光谱的降维处理,并在保持光谱信息达到99.999%的前提下将主成分因子个数由10降为5。对比分析了偏最小二乘回归、BP神经网络和最小二乘支持向量机回归三种建模方法,以真实值与模型预测值的相关系数作为评价标准,最终确定最小二乘支持向量机为温室黄瓜病虫害叶绿素荧光光谱分析的一种较为适宜的建模方法。The present paper is based on chlorophyll fluorescence spectrum analysis.The wavelength 685 nm was determined as the primary characteristic point for the analysis of healthy or disease and insect damaged leaf by spectrum configuration.Dimensionality reduction of the spectrum was achieved by combining simple intercorrelation bands selection and principal component analysis(PCA).The principal component factor was reduced from 10 to 5 while the spectrum information was kept reaching 99.999%.By comparing and analysing three modeling methods,namely the partial least square regression(PLSR),BP neural network(BP) and least square support vector machine regression(LSSVMR),regarding correlation coefficient of true value and predicted value as evaluation criterion,eventually,LSSVMR was confirmed as the appropriate method for modeling of greenhouse cucumber disease and insect damage chlorophyll fluorescence spectrum analysis.

关 键 词:荧光光谱 主成分分析 最小二乘支持向量机 黄瓜病虫害 

分 类 号:S123[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象