R_0-代数上的滤子拓扑空间  被引量:11

Filter topological spaces on R_0-algebras

在线阅读下载全文

作  者:周红军[1] 

机构地区:[1]陕西师范大学数学与信息科学学院,陕西西安710062

出  处:《山东大学学报(理学版)》2012年第4期110-115,共6页Journal of Shandong University(Natural Science)

基  金:国家自然科学基金资助项目(61005046);教育部高等学校博士学科点专项科研基金资助项目(201000202120012);陕西省自然科学基础研究计划资助项目(2010JQ8020);中央高校基本科研业务费专项资金资助项目(GK200902048)

摘  要:在R0-代数M上以全体MP滤子之集为拓扑基建立了一个滤子拓扑空间(M,TM),给出了导集、闭包以及内部的计算公式。证明了(M,TM)是连通的、覆盖紧的且满足第一可数性公理;(M,TM)满足第二可数性公理当且仅当主滤子之集是可数集,(M,TM)不是T1的,不是T2的,也不是正则的或正规的;(M,TM)是T0空间当且仅当M是Boole代数。最后讨论了积R0-代数上的积空间。A topological space(M,TM) with the set of all MP-filters as its basis on an R0-algebra M is introduced.Characterizations of differentiate,closure and interior operators in(M,TM) are obtained.It is proved that(M,TM) is connected and covering-compact and satisfies the first separation axiom,and it satisfies the second separation axiom if and only if the set of all principle filters is countable.However,(M,TM) is neither T1 nor regular.It is also proved that(M,TM) is T0 if and only if the R0-algebra M reduces to a Boolean algebra.Finally,product spaces on product R0-algebras are investigated.

关 键 词:R0-代数 MP滤子 滤子拓扑 

分 类 号:O141[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象