检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭丹[1]
出 处:《控制工程》2012年第3期438-442,共5页Control Engineering of China
基 金:Supported by National Natural Science Foundation of China(60804030,60974018,NCET-08-0658);Natural Science Foundation of Hebei Province(Z2011153);Higher Science and Technology Research and Development projects of Qinhuangdao(201101A107)
摘 要:针对一类由局部状态空间(LSS)Fornasini-Marchesini(FM)第二模型描述的,具有时变状态滞后的2-D离散系统,其中时变滞后项的上、下界均为正实数,研究了其稳定性和控制综合问题。首先,利用Lyapunov-Krasovski泛函方法,提出了系统的稳定性准则。再根据这一准则,分别设计状态反馈和动态输出反馈控制器保证系统的稳定性。状态反馈控制律和输出反馈矩阵可由线性矩阵不等式(LMI)求得。最后,通过数值算例说明所得结果的有效性。The stability and stabilization problems for a class of two - dimensional ( 2-D ) discrete sys- tems with time - varying state delays are addressed. The 2-D systems are described by a local state - space(LSS) Fornasini- Marchesini (FM)second model, where the time-varying state delays are assumed to vary in an interval with known positive real upper and lower bounds. By using the well-known Lyapunov-Krasovski functional approach, a stability criterion is established . Then, a state feedback controller and a dynamic output feedback controller are designed to assure the stability of 2-D time - varying systems, respectively. The state feedback gain and output feedback matrices can be obtained by solving linear matrix inequalities (LMIs). Finally, numerical examples are given to demonstrate the effectiveness of our results.
关 键 词:2-D时变系统 渐近稳定 状态反馈 输出反馈 线性矩阵不等式(LMI)
分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222