混合语音识别模型的设计与仿真研究  被引量:5

Design and Simulation Research on Speech Recognition Model

在线阅读下载全文

作  者:宋志章[1] 马丽 刘省非[1] 李奇楠[1] 

机构地区:[1]齐齐哈尔大学,黑龙江齐齐哈尔161006 [2]齐齐哈尔市质量技术监督检验检测中心,黑龙江齐齐哈尔161006

出  处:《计算机仿真》2012年第5期152-155,共4页Computer Simulation

基  金:黑龙江省新世纪高等教育教学改革工程项目(2110)

摘  要:研究语音识别率问题,语音信号是一种非平稳信号,含有大量噪声信息,目前大多数识别算法线性理论,难以正确识别语音信号非线性变化过程,识别正确率低。通过将隐马尔可夫模型(HMM)和SVM相结合组成一个混合抗噪语音识别模型(HMM-SVM)。同时用HMM模型对语音信号时序进行建模,并得到待识别语音信号的输出概率,然后将输出概率作为SVM的输入进行学习,得到语音分类信息,最后通过利用HMM-SVM识别结果做出正确识别决策。仿真结果表明,HMM-SVM提高语音识别正确率,尤其在低信噪比环境下,明显改善了语音识别系统的性能。Study noisy speech recognition rate.The speech signals are non-stationary signals which contain a lot of noises,and most of the current recognition algorithms are based on linear theory,therefor,the correct recognition rate is low.The HMM model and SVM(HMM-SVM) were combined to build a noisy speech recognition model.The HMM-SVM model first the HMM model was used in modelling the speech signal time series and to calculate the output probability of the the speech signals to be recognized.Then the output probability was used as input of SVM for learning to acquire the information voices classification.Finally.The HMM-SVM identification results were used to make the correct decision.The simulation results show that,compared with the single HMM or SVM model,the HMM-SVM model can improve the accuracy of speech recognition.Especially in low SNR environment,HMM-SVM can significantly improve the performances of speech recognition systems.

关 键 词:语音识别 隐马尔可夫 支持向量机 特征提取 

分 类 号:TN912[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象