检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙清滢 徐琳琳 刘丽敏 王宣战 宫恩龙[2] 徐胜来[2]
机构地区:[1]中国石油大学(华东)理学院,青岛266580 [2]青岛酒店管理职业技术学院,青岛266100
出 处:《工程数学学报》2012年第3期375-385,共11页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(10971118);中央高校基本科研业务费专项资金(10CX04044A)~~
摘 要:超记忆梯度算法由于其迭代简单和较小的存储需求,在求解大规模无约束优化问题中起着特殊的作用.本文基于稀疏对角拟牛顿技术,结合修正Gu和Mo非单调线搜索步长规则,建立了求解大规模无约束最优化问题的非单调超记忆梯度新算法,给出了算法的全局收敛性分析.新算法具有算法稳定、计算简单的特点可用于求解病态和大规模问题.数值例子表明算法有效稳定.The super-memory gradient method has played a special role for solving large-scale unconstrained optimization problems due to its simplicity and the very low storage. In this paper, by combining the diagonal-sparse quasi-Newton technique with the modified Gu and Mo non-monotone line search method, a new super-memory gradient method for unconstrained optimization problems is presented. The global convergence property of the new method is analyzed. The new method has two properties: it converges stably and can solve ill-conditioned problems, it only needs simple computation so as to solve large-scale problems. The numerical results show that the new method is effective and stable in practical computation.
关 键 词:非线性规划 稀疏对角拟牛顿算法 非单调线搜索 超记忆梯度算法 收敛性
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222