检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京航空航天大学学报》2012年第4期551-556,共6页Journal of Beijing University of Aeronautics and Astronautics
基 金:中央高校基本科研业务费专项资金(YWF-10-02-091)
摘 要:研究了初始停泊轨道为椭圆时,空间飞行器在常值径向推力下运动的有界性和周期性.首先建立了飞行器运动的动力学方程,并通过能量积分和角动量积分进行了简化.然后将有界性的研究转化为一个一元三次不等式的求解,并在此基础上针对不同的初始真近点角分别进行了研究,得到了运动的边界和有界性条件.接下来利用椭圆积分研究了运动的周期性,分别研究了径向运动、极角转动以及整体运动的周期性.最后用数值算法得到了运动的周期轨道.The trajectory of a spacecraft under constant radial thrust was studied.Great deals of efforts were dedicated to investigate the boundedness and periodicity.The case of elliptic parking orbit was focused.First,the equations of motion were formulated in polar coordinates and simplified into quadratures by using of energy integral and angular momentum integral.Then,the orbital boundedness was analyzed by transforming the original problem into solving a cubic inequality.Basing on different initial parking true anomaly,the problem was researched separately.The bounds of motion and escaping conditions were obtained in terms of thrust.Next,the periodicity of motion was studied by utilizing elliptic integrals.The periodicity of radial motion and periodicity in polar angle changing were explained.A property of quasi-periodicity in motion was described.The quasi-periodic motion could degenerate into periodic orbits,if a condition among initial parking parameters and thrust were satisfied.Meanwhile,a Newton-Raphson algorithm was given to obtain periodic orbits numerically.Several numerical examples were given to support the conclusion.
关 键 词:机动轨迹 常值径向推力 椭圆轨道 有界性 周期性
分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.238.221