检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学商学院,江苏南京210098 [2]淮阴工学院经济管理学院,江苏淮安223001 [3]河海大学公共管理学院,江苏南京210098
出 处:《长江流域资源与环境》2012年第6期665-671,共7页Resources and Environment in the Yangtze Basin
基 金:教育部人文社科规划基金项目(11YJA790214);国家统计局科研项目(2010LC70);淮阴工学院科研基金项目
摘 要:预测我国碳排放强度的长期变动趋势,对国家进行宏观经济管理和节能减排工作具有重要的参考价值。运用深入分析自回归移动平均模型和神经网络的特性,并在此基础上建立ARIMA模型和BP神经网络组合模型,将碳排放强度的时间序列的数据结构分解为线性和非线性残差部分,对我国碳排放强度的变化趋势进行了综合分析与预测。结果显示:今后10a我国碳排放强度总体是逐步下降的,但到2020年我国碳排放强度仅比2005年下降34%,比我国政府提出碳排放强度下降40%~45%的目标还有一定的差距。因此,要在2020年实现我国碳排放强度目标,必须要调整宏观经济政策,采取各种政策措施以实现目标。Abstract: Forecasting long-term intensity of carbon emissions in China has important significance for policy makers to macro-economy management and Energy-Saving Emission Reduction Efficiency. Based on analysis of the autoregressive integrated moving average (ARIMA) and neural networks (NN) models,this paper presented an ensemble approach to the intensity of carbon emission time series forecasting which inte- grated ARIMA with NN. The time series was considered of a linear autocorrelation structure and nonlinear structure, and then the change trend of intensity of carbon emissions was analyzed and predicted. The fore- cast results indicate that the carbon intensity is gradually declined in the next ten years, but the intensity of carbon emissions in 2020 decreases only by 34% based on the 2005 level. The Chinese government pro- claimed a mitigation target which proposed that intensity of carbon emissions in 2020 would be reduced by 40%--45% based on the 2005 level. Therefore,we have to adjust macroeconomic policy and take all kinds of policy measures to achieve the goal.
关 键 词:碳排放强度 BP神经网络 ARIMA模型 组合模型
分 类 号:X511[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62