木材表面图像的缺陷分割与类型识别方法  被引量:2

The Method of Defects Segmentation and Recognition to Wood Surface Image

在线阅读下载全文

作  者:白雪冰[1] 张娜[1] 王再尚[1] 

机构地区:[1]东北林业大学,黑龙江哈尔滨150040

出  处:《机电产品开发与创新》2012年第3期79-81,共3页Development & Innovation of Machinery & Electrical Products

基  金:黑龙江省博士后基金项目资助(LBH-Q10160)

摘  要:为了识别死节、活节、虫眼三种木材表面缺陷,采用Gabor变换和模糊C均值聚类进行缺陷分割;采用数学形态学运算对分割图像进行了后处理;获取了木材缺陷区域的12维频率能量参数和2维几何形状参数;用支持向量机进行木材表面缺陷类型的识别。采用Gabor变换和模糊C均值聚类方法对死节、活节、虫眼三种木材表面缺陷的分割精度都达到94%以上,支持向量机对缺陷类型分类正确率达到93%以上,这说明本文的方法对木材表面缺陷的分割与识别是可行的。In order to recognize the wood surface defects of dead knot, live knot, and worm hole, Gabor transtorm and fuzzy C-means clustering algorithm were used to segment wood image defects. Mathematical morphology was used in post-processing operation of" segmented wood images, 12 frequency-enengy parameters and 2 shape parameters of defect targets were calculated. Support vector machines were used in the recognition of wood surface defect types.The segmentation accuracy to defects reached up to 94%, and the recognition accuracy to defect types of Support vector machines reached up to 93%. The result shows that it is feasible to segment and identify wood surface defects.

关 键 词:木材表面缺陷 缺陷分割 GABOR变换 支持向量机 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象