EGO方法的训练算法及应用  被引量:1

Training Algorithms for EGO Method and Applications

在线阅读下载全文

作  者:邓枫[1,2] 覃宁[1,2] 伍贻兆[1] 

机构地区:[1]南京航空航天大学航空宇航学院,江苏南京210016 [2]Department of Mechanical Engineering,University of Sheffield

出  处:《计算物理》2012年第3期326-332,共7页Chinese Journal of Computational Physics

摘  要:针对高效全局优化(Efficient Global Optimization,简称EGO)方法的训练问题,选择元启发式(Meta-heuristic)算法、随机取样算法以及低频序列算法,并选用三个无约束、两个带约束解析优化算例以及两个气动优化算例,对这三类训练算法进行详细地比较研究,发现在元启发式算法中差分进化算法最具应用潜力,而低频序列算法可以有效降低EGO方法的随机性,其中Faure序列平均性能最优.Three kinds of training algorithms for efficient global optimization (EGO) method are investigated. A kind of training algorithm based on low-discrepancy sequences is proposed to reduce randomness of EGO method. Performance of EGO method depends on a good training algorithm. Since training problems in EGO are non-convex and non-smooth, meta-heuristic algorithms, random algorithm and low-discrepancy sequences are chosen to address five benchmark optimization problems and two aerodynamic shape optimization problems. In these problems, differential evolution algorithm was found the best in meta-heuristic algorithms. Training algorithm based on low-discrepancy sequences can effectively reduce randomness of EGO method and Faure sequence has the best performance.

关 键 词:计算流体力学 气动外形优化 克里金模型 全局优化 

分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象