基于人工神经网络的液压振动系统研究  被引量:1

Study on hydraulic vibration system based on artificial neural network

在线阅读下载全文

作  者:郭志刚[1] 李文选[1] 冯继刚[1] 

机构地区:[1]河北工程大学机电工程学院,河北邯郸056038

出  处:《河北工程大学学报(自然科学版)》2012年第2期78-80,共3页Journal of Hebei University of Engineering:Natural Science Edition

摘  要:以两自由度液压激振压路机的液压振动系统为研究对象,采用立体正交试验选取试验因素,在每个试验因素中选择3个水平子集合,获得训练神经网络的样本。通过人工神经网络理论建立数学模型,借助Mtalab仿真计算出试验因素水平子集合最优组合参数。研究结果表明:通过建立人工神经网络数学模型,得出立体正交表的最优组合仿真目标值为0.552 3,系统刚度为3.3 N/mm,与试验目标值的相对误差为10.46%,满足工程要求。The hydraulic vibration system of two freedom hydraulic vibration roller was the research object in this paper. Three horizontal subsets were selected in every experimental factor which was ob- tained from the three -dimensional orthogonal experiment to obtain the samples of the training neural network. The mathematic model was built by artificial neural network theory and the optimum com- bined parameters of horizontal subsets were established by means of Mtalab simulation. The results show that target value of the optimum combined is 0. 552 3 and the stiffness of the system is 3.3 N/ mm through the artificial neural network mathematics model. This meets the project requirement because of the relative error of 10.46% between experimental results and experimental target value.

关 键 词:正交试验 人工神经网络 数学模型 计算机仿真 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象