一类泛函方程解的存在唯一性及其性质  被引量:1

Existence and properties of solutions for a class of functional equations

在线阅读下载全文

作  者:沈洁[1] 陶雁敏[1] 曹天水[1] 李丹[1] 

机构地区:[1]辽宁师范大学数学学院,辽宁大连116029

出  处:《辽宁师范大学学报(自然科学版)》2012年第2期150-153,共4页Journal of Liaoning Normal University:Natural Science Edition

基  金:国家自然科学基金项目(11171138);辽宁省教育厅科学技术研究项目(L2010235)

摘  要:讨论了一类源于动态规划的泛函方程,主要研究在某些条件下该泛函方程解的存在性、唯一性、迭代逼近及解的某些性质等问题.研究过程中,首先定义了巴拿赫空间中一个有界闭凸子集上的映射,其次证明该映射为非扩张的自映射,最后再证明该空间的任意收敛点列都是柯西列,从而由巴拿赫空间的完备性、不动点定理和非扩张映射证明了解的存在性.得到的结果拓宽、深化了刘泽庆等人的一些已有结论,并在一定程度上统一和归纳了由Bellman,Bhakta,Mitra等学者得到的早期研究结果.In this paper we consider a class of functional equations arising in dynamic programming.The existence, uniqueness, iterative approximation and some properties of the solutions for the func- tional equations are discussed. During the process of the study, we firstly define a mapping on a closed bounded and convex subset of Banach space, and then prove that this mapping is a non-expan- sive mapping into itself. Furthermore, we show that every convergent sequence on this subset is a Cauchy sequence. Finally, by using non-expansive mapping, fixed point theorem and the complete- ness of Banach space, the existence of the solution is obtained. The results presented in this paper not only generalize the results in Liu, but also unify the previous results due to Bellman, Bhakta, Mitra and others.

关 键 词:动态规划 泛函方程 迭代逼近 非扩张映射 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象