检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北科技学院,北京101601
出 处:《煤矿机械》2012年第7期208-209,共2页Coal Mine Machinery
基 金:华北科技学院科技基金项目(2011B032)
摘 要:针对基本蚁群算法在求解过程中容易出现收敛时间过长和陷入局部最优的不足,提出了一种动态自适应的蚁群算法(DSACO),在算法DSACO中改进了算法的重要参数,当算法疑似陷入局部最优时,通过自适应调整参数来提高全局最优解的求解质量和信息量强度;最后在煤炭运输问题上进行实验仿真,结果表明,DSACO算法与基本蚁群算法相比较,加快了收敛速度,提高了全局寻优能力。Aiming at these disadvantages which are the algorithm is easily got into long convergence time and trapped in a local optimum in the basic ant colony algorithm, this essay presents a dynamic self-adaptive ant colony optimization algorithm (DSACO). The DSACO algorithm sets-up and affects the algorithm performance parameters (α, β and p) and pheromone values (r). When the algorithm traps into a local optimum. This algorithm improves the global optimum solution of quality and the strength of pheromone by the adaptive adjustment of parameters when the algorithm traps into a local optimum. Simulation experiment about the question of coal transportation shows that the algorithm, compared with basic ant colony algorithm, enhanced the convergence speed and global optimization asoects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28