检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:麻海圆[1,2] 孟相如[1] 李哲[3] 温祥西[1] 朱子健[1]
机构地区:[1]空军工程大学信息与导航学院 [2]94303部队 [3]空军工程大学
出 处:《空军工程大学学报(自然科学版)》2012年第3期70-74,共5页Journal of Air Force Engineering University(Natural Science Edition)
基 金:陕西省自然科学基础研究计划资助项目(SJ08F14;2009JQ8008)
摘 要:针对现有丢包区分算法难以获取先验知识和不具有推广性的问题,通过对模糊单类支持向量机的改进提出一种新的丢包区分算法。该算法根据无线误码丢包与按序到达包的时延特征分布一致的特点,由按序到达包的时延特征构成训练集,从而将区分误码丢包和拥塞丢包的二分类问题转化为判断丢包是否为误码丢包的单分类问题。由于无需采集两类丢包样本,解决了难以获取先验知识的问题,使新算法能实现在线的模型训练和丢包区分,具有很好的推广能力。仿真结果显示,新算法区分效果良好,提高了无线网络的传输效率。The use of the existing Loss Differentiation Algorithms (LDA) cannot get prior knowledge from actual networks, so the algorithms can hardly be generalized to various environments. To solve this problem, a new LDA is proposed by enhancing the Fuzzy One -class Support Vector Machine (FOCSVM). The new LDA converts the differentiation packet loss between congestion and bit error on wireless links into judging that whether the loss is be- cause of bit error. The training set consists of only the in - sequence packets received by the receiver, so the classi- fication model can be got and updated during the session, without the prior knowledge about the two types of loss, which makes the LDA have fine generalization. Simulation results show that the proposed LDA has good differentia- tion accuracy and can enhance the utilization of resources in wireless networks.
分 类 号:TP393.04[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229