检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福建省建阳气象雷达站,建阳354200 [2]福建省南平市气象局,南平353000
出 处:《南京信息工程大学学报(自然科学版)》2012年第3期220-225,共6页Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基 金:福建省自然科学基金(2008J0241)
摘 要:基于误差平方和最小化准则的BP神经网络(ANN-MSE)并不适合解决小概率天气事件的预报问题,引进一种改进的以交叉熵函数为目标函数的神经网络方法(ANN-CE),该法是一个三层反向传播神经网络,其输出层只用一个节点.利用2003—2008年的ECMWF预报场资料,把该法用于福建省南平市4—6月部分大雨或以上降水96h预报中,分别用原始因子和PCA降维后的主因子建立了ANN-CE预报模型和ANN-MSE预报模型,用这些模型对2009—2010年独立样本进行了试报.测试结果显示主因子预报模型TS评分比原始因子预报模型高且漏报次数少,其中,主因子ANN-CE预报模型的TS评分和漏报率分别是0.51和0.17,其性能是所有模型中最好且最为稳定的,是一种适合于小概率事件预报的方法.As a neural network based on MSSE,ANN-MSE is not an appropriate solution to the problem of predic- ting rare weather event. In this paper, an improved neural network method, ANN-CE is presented,which is a three layered back-propagation neural network with one output unit. The error function of ANN-CE is a cross entropy function. Then utilizing ECMWF forecast fields data, this method was applied to 96 hours foreeast of heavy preeipita- tion event in northern Fijian province. The ANN-CE model and the ANN-MSE model based on original faetor and principle component after PCA reducing dimensions were respeetively built. These models were applied to independ- ent samples in 2009--2010 ,and the test results are as following:TS grade for model based on prineipal component is higher than that of model based on original factors;miss-rate for the ANN-CE model is lower than that of the ANN-MSE model. All in all, ANN-CE model based on prineipal eomponent has best performance and stability, whose TS grade and miss-rate was respectively 0.51 and 0. 17 ,so it was suited for forecasting rare event.
分 类 号:TH71[机械工程—测试计量技术及仪器] TG803[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117