Dimension-down iterative algorithm for the mixed transportation network design problem  

混合交通网络设计问题的迭代降维算法(英文)

在线阅读下载全文

作  者:陈群[1] 姚加林[1] 

机构地区:[1]中南大学交通运输工程学院,长沙410075

出  处:《Journal of Southeast University(English Edition)》2012年第2期236-239,共4页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No. 50908235 );China Postdoctoral Science Foundation (No.201003520)

摘  要:An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.提出了一种优化的迭代降维算法求解混合交通网络设计问题. 混合(连续/离散) 交通网络设计问题常表示为一个带均衡约束的数学规划问题,上层通过新建路段和改善已有路段来优化网络性能,下层是一个传统的 Wardrop 用户均衡模型. 迭代降维算法的基本思想是降维,先保持一组变量(离散/连续) 不变,交替地对另一组变量(连续/离散) 实现最优化. 以迭代的形式反复求解连续网络设计和离散网络设计问题,直至最后收敛到最优解. 通过一个数值算例对算法的效果进行了验证.

关 键 词:mixed network design problem (MNDP) dimension-down iterative algorithm (DDIA) mathematical programming with equilibrium constraint (MPEC) 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象