检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王璐 李光春[1] 乔相伟[1,3] 王兆龙[1] 马涛[1]
机构地区:[1]哈尔滨工程大学自动化学院,哈尔滨150001 [2]上海交通大学电子信息与电气工程学院,上海200240 [3]西安航天精密机电研究所,西安710100
出 处:《自动化学报》2012年第7期1200-1210,共11页Acta Automatica Sinica
基 金:国际合作项目(2010DFR80140)资助~~
摘 要:针对噪声先验统计特性未知情况下的非线性系统状态估计问题,提出了基于极大似然准则和最大期望算法的自适应无迹卡尔曼滤波(Unscented Kalman filter,UKF)算法.利用极大似然准则构造含有噪声统计特性的对数似然函数,通过最大期望算法将噪声估计问题转化为对数似然函数数学期望极大化问题,最终得到带次优递推噪声统计估计器的自适应UKF算法.仿真分析表明,与传统UKF算法相比,提出的自适应UKF算法有效克服了传统UKF算法在系统噪声统计特性未知情况下滤波精度下降的问题,并实现了系统噪声统计特性的在线估计.In order to solve the state estimation problem of nonlinear systems without knowing prior noise statistical characteristics, an adaptive unscented Kalman filter (UKF) based on the maximum likelihood principle and expectation maximization algorithm is proposed in this paper. In our algorithm, the maximum likelihood principle is used to find a log likelihood function with noise statistical characteristics. Then, the problem of noise estimation turns out to be maximizing the mean of the log likelihood function, which can be achieved by using the expectation maximization algorithm. Finally, the adaptive UKF algorithm with a suboptimal and recurred noise statistical estimator can be obtained. The simulation analysis shows that the proposed adaptive UKF algorithm can overcome the problem of filtering accuracy declination of traditional UKF used in nonlinear filtering without knowing prior noise statistical characteristics and that the algorithm can estimate the noise statistical parameters online.
关 键 词:非线性滤波 自适应UKF算法 噪声统计估计器 极大似然准则 最大期望算法
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112