检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819 [2]沈阳第一机床厂,辽宁沈阳110142
出 处:《东北大学学报(自然科学版)》2012年第7期975-978,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(51074052);中央高校基本科研业务费专项资金资助项目(N110607002)
摘 要:用平均屈服(MY)准则,对受线性和均布载荷共同作用下的简支圆板进行塑性极限分析,求得了2种载荷形式下极限载荷的解析解.两解析解均为圆板半径a,切向应力最大点半径r0以及极限弯矩的函数.第一种形式的计算结果与Tresca,Mises和TSS屈服准则预测的极限载荷比较表明,Tresca屈服准则预测极限载荷的下限,TSS屈服准则预测极限载荷的上限,MY准则预测的极限载荷居二者中间,并靠近Mises解.另外还讨论了圆板半径对切向应力最大点半径的影响规律.With MY(mean yield) criterion, the limit loads of simply supported circular plate under linearly and uniformly distributed load were analyzed, and two analytical solutions to two forms of loads were obtained. The solutions showed that both the limit loads are the function of circular plate radius a, radius of the maximum tangential stress location r0 and ultimate bending moment. The limit load of the first form calculated by the solution is compared with those based on Tresca, Mises, as well as TSS yield criteria. It is shown that Tresca criterion predicts a lower bound to the collapse load, while TSS criterion predicts an upper bound one. The limit load based on the MY criterion lies between the TSS and Tresca solutions, and the MY solution is closed to Mises solution. Besides, the effect of circular plate radius a on r0 is also discussed.
关 键 词:MY准则 线性和均布载荷 简支圆板 极限载荷 解析解
分 类 号:TG335.5[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7