检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:米曾真[1] 谢志江[1] 陈涛[1] 楚红雨[1] 范兵[1]
机构地区:[1]重庆大学机械传动国家重点实验室,重庆400044
出 处:《光学精密工程》2012年第7期1645-1652,共8页Optics and Precision Engineering
基 金:国家自然科学基金委员会与中国工程物理研究院联合基金资助项目(No.10976034)
摘 要:针对重轨图像两个边缘像素特征不一致,传统边缘算子检测法难以精确提取边缘的问题,提出了一种新的边缘提取方法。该方法利用灰度强对比度拉伸算法对重轨表面和背景进行差异化拉伸,增强边缘信息,削弱背景信息。运用最大方差比算法选取增强后图像的最佳阈值实现二值化。最后,运用递归连通域标识法定位边缘像素坐标,完成图像分割。对随机选取的30幅图像进行分析表明:处理后的图像边缘灰度特征明显增强,有效地抑制了表面纹理及虚假边缘。重轨表面像素宽度波动减少到-0.64%~0.34%。离散预处理算法通过遍历寄存器全局数组,减少分割时间至10.165s。该方法在抗干扰性、准确性及时效性等方面优于传统边缘算子检测法,适用于在线工业检测系统。As the two edge pixels of a heavy rail image is not identical, the classical edge operators are difficult to achieve the edge extraction and segmentation. Therefore, this paper proposed a new algorithm to enhance and extract images. A strong contrast stretching algorithm was used to stretch the rail surface and the background differently, enhance the edge information and weaken the background information. Then, the maximum variance method was taken to select the optimal threshold to implement the binarilization. Finally, the recursion connected domain marker algorithm was used to locate the pixel coordinates of edge to achieve the image segmentation. 30 images were chosen to a discretion experiment, and results indicate that the gray features of image edge are enhanced clearly, surface textures and false edges are restrained availably. Moreover, the pixel width fluctuating range is reduced from -0.64% to 0.34%. With the discrete pretreatment algorithm via addressing global array of a register, the segmentation time has been decreased to 10. 165 s. The algorithm is better than the classical edge operators in the precision, correctness and the timeliness and is more suitable for on-line detection systems.
关 键 词:图像分割 图像增强 边缘提取 线像素 连通域 强对比度拉伸 最大方差比
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30