检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,西安710129 [2]济南大学控制学院,济南250022
出 处:《计算机工程与应用》2012年第23期181-184,共4页Computer Engineering and Applications
基 金:航空科学基金(No.20080153002)
摘 要:运动目标在跟踪过程中往往伴随着尺度、形状的变化,Mean shift跟踪算法由于采用固定的核窗宽度进行运动目标跟踪,因而它本身不能适应这种变化。针对Mean shift算法存在的缺点,提出一种基于模糊推理的自适应Mean shift跟踪算法,该算法利用卡尔曼滤波算法对目标当前位置进行预测;设计模糊判定准则在线调整目标尺度值,利用Mean shift迭代运算逐步逼近目标完成跟踪;利用相似度和置信度系数设计模型更新准则,以实现模板的自适应更新。实验结果证明,该算法能够适应目标尺度和背景的变化,较普通的Mean shift跟踪算法不仅跟踪精度提高,而且鲁棒性更强。Mean shift algorithm of moving target tracking can not always adapt to the change of the target scale because it works with an invariable bandwidth kernel during the real tracking scenes.An adaptive moving target tracking algorithm based on fuzzy inference system is proposed in this paper.The location of target in the present frame is predicted by Kalman filter.The target scale is on-line adjusted adaptively by the fuzzy inference system where log likelihood ratio for object versus background and the similarity between candidate target and model is as its input.The target is tracked by Mean shift iterations.A model updating mechanism by the similarity which combines with the log likelihood ratio is designed to update the model of the tracking target adaptively.The algorithm is robust and tracks accurately.The experimental results justify that the algorithm can adapt to the change of the target scale and the background,and the tracking precision is superior to traditional Mean shift algorithm.
关 键 词:自适应跟踪 Mean SHIFT 模糊判决方法 卡尔曼滤波
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249