检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学通信与信息工程学院,上海200072
出 处:《数据采集与处理》2012年第4期469-473,共5页Journal of Data Acquisition and Processing
基 金:国家自然科学基金(61001162)资助项目
摘 要:波段选择是降低高光谱数据量,克服地物分类中Hughes现象的有效手段。子集生成方式和评价准则是选择算法的两要素。提出一种混合随机搜索与启发式搜索的子集生成方法。该方法在随机搜索中嵌入启发式搜索,对由离散粒子群优化算法每次迭代更新的种群利用序贯搜索进行局部微调,提高了随机搜索的精度。这种嵌入微调也保证了优化算法解的有效性。高光谱波段选择与分类实验比较了该方法与混合遗传算法、标准遗传算法和顺序前向浮动选择算法的性能,表明算法能选择出评价准则意义下更好的子集。Band selection can cut down a large amount of hyperspectral data and alleviate the Hughes phenomenon in supervised classification of ground objects. The generation and evaluation of subsets are two key factors for selection algorithm. A hybrid scheme of random search and heuristic search is proposed to generate the band subset. The method embeds the sequential search into the evolution optimization for better performance of the fine tune in local search space. Thus, it behaves well in both global and local cases. Furthermore, the embedding scheme guarantees the validity of solutions for the optimization algorithms. The performance of the proposed method, the hybrid genetic algorithm (HGA), the standard genetic algorithm (SGA) and the sequential forward floating selection (SFFS) are compared in the experiments on band selection and classification with the hyperspectral data sets. Results show that the proposed method can obtain the best subsets according to the evaluation criterion.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43