检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王红玲[1,2] 张明慧[1,2] 周国栋[1,2]
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215002 [2]苏州大学江苏省计算机信息处理技术重点实验室,江苏苏州215002
出 处:《计算机工程与应用》2012年第25期132-136,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.60873150);江苏省高校自然科学重大基础研究项目(No.08KJA520002)
摘 要:多文档自动文摘能够帮助人们自动、快速地获取信息,使用主题模型构建多文档自动文摘系统是一种新的尝试,其中主题模型采用浅层狄利赫雷分配(LDA)。该模型是一个多层的产生式概率模型,能够检测文档中的主题分布。使用LDA为多文档集合建模,通过计算句子在不同主题上的概率分布之间的相似度作为句子的重要度,并根据句子重要度进行文摘句的抽取。实验结果表明,该方法所得到的文摘性能优于传统的文摘方法。Multi-document summarization can help people access to information automatically and fast. Chinese multi-document summarization based on topic model is a new attempt. The LDA (Latent Dirichlet Allocation) model is a multi-level generative probabilistic model, can detect the topic distribution of the document. In the method, it models the document using LDA, then calculates the distance between a sentence and the given multi-documents via their topic probability distributions as the weight of the sentence. The paper extracts sentences according to the weight of the sentence. Experimental results show that the performance is a clear superiority over the traditional method under the proposed evaluation scheme.
关 键 词:中文自动文摘 浅层狄利赫雷分配(LDA) 主题模型 多文档
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.97.68