检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学城市科技学院,重庆401331 [2]重庆大学数学与统计学院,重庆401331
出 处:《德州学院学报》2012年第4期14-18,共5页Journal of Dezhou University
基 金:中央高校基本科研业务费资助(CDJXS10 1000 17)
摘 要:采用三角小波函数作为基函数和检验函数提出了一种Galerkin边界元法.当问题区域是单位圆时,推导了系数矩阵元素的计算公式,其显示了大多数元素是零,从而系数矩阵是稀疏的,且可由一些循环的对称或反对称子矩阵构成,因此存储空间和计算复杂度大大减少.数值算例验证了方法的有效性.A Galerkin boundary element method based on trigonometric wavelets is proposed in this paper.In this approach,the Hermite trigonometric wavelets are employed as the trial and test functions of variational formulation.The simple computational formulae of the entries in coefficient matrix are obtained when the domain is a unit disk.Most of the matrix entries are naturally zero without any truncating technology.It shows that the coefficient matrix consists of some symmetric and antisymmetric circular submatrices.Hence the memory spaces and computational complexity can be reduced greatly.Finally,some test examples are presented.
关 键 词:三角小波 Galerkin边界元法 稀疏矩阵
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117