检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学航空科学与工程学院,北京100191 [2]中国航空研究院航空数值模拟技术研究应用中心,北京100012
出 处:《北京航空航天大学学报》2012年第7期953-956,共4页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金资助项目(10904178)
摘 要:在CFD(Computational Fluid Dynamics)时间相关算法中,为了保证计算的稳定性,时间步长的取值通常会很小,这将导致计算过程收敛缓慢.针对这一问题,提出了一种新的迭代算法—交替LU分裂(ALUS,Alternating Lower-Upper Splitting)算法,可以有效加速收敛,提高计算效率.ALUS算法将系数矩阵分裂成上、下三角矩阵,因此仅需要利用追赶法求解两个三角矩阵,计算量较小,容易实现.给出了ALUS算法收敛的定理,并且通过线性问题以及CFD圆柱绕流的数值模拟对ALUS算法进行了检验.理论分析和数值实验的结果均表明:ALUS算法计算量小,大大节省了计算时间,而且该算法是鲁棒的.因此ALUS算法是高效的、稳定的算法,适用于CFD数值模拟.Small time step is used to ensure convergence in the time-dependent method in computational fluid dynamics(CFD).An improved iteration method termed as the alternating lower-upper splitting(ALUS) iterative method was proposed to address the problem,in which the coefficient matrix was split into a lower and an upper triangular matrix.In each inner step,only two triangular matrices were solved by Thom asalgorithm,therefore the ALUS method is simple.Theorems were listed to ensure the ALUS method convergence.A linear equation problem and flow around the cylinder were used to illustrate the characteristic of the ALUS method.Theoretical analysis and numerical results both demonstrate the new method performs well for positive definite matrices.Withless amount of computational work,the CPU time can be greatlydiminished.Thus the new ALUS method is efficient and robust and it is applicable in CFD numerical simulation.
分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38