检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学工业装备结构分析国家重点实验室,运载工程与力学学部汽车工程学院,大连116024 [2]大连理工大学工程力学系,大连116024
出 处:《力学学报》2012年第5期839-850,共12页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金项目(10932003;11272075);国家高技术研究发展计划(2009AA04Z101);国家重大基础研究发展计划(2010CB832700);"04"中国信息工业部重点项目(2011ZX04001-21)资助~~
摘 要:利用拟协调元方法,在直角坐标系下直接构造了一族平面任意四边形单元,对其收敛性进行了分析,并与平面等参元进行了对比研究.结果证明平面任意四边形单元可采用多项式基函数直接列式,并可以保障单元的收敛性;拟协调元列式可以使平面问题的有限元方法得到统一.与平面等参元相比,单元列式简单,性能稳定,具有显式的刚度阵,计算量小,这说明对于有限元平面问题拟协调元是一个更正确、有效的做法.The direct formulation of quadrilateral plane element in rectangular Cartesian coordinate system has been a forbidden zone for finite element method. In this paper, the quasi-conforming finite element method is applied on this problem and a bilinear element as well as complete second-order element is constructed. Meanwhile, the convergence anMysis of the elements is carried out with "Taylor expansion test" and the comparative study with isoparametric element is also considered. The results show the direct formulation of quadrilateral plane elements is feasible within the quasi-conforming framework, and there is not any convergence problem with these elements. Therefore the finite element theory concerning plane element can be unified by quasiconforming framework. Compared with isoparametric elements, the bilinear element present in this paper is easy to formulate, with stable performance and explicit stiffness matrix for the plane problem analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249