检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛军锋[1]
机构地区:[1]西京学院,西安710123
出 处:《科学技术与工程》2012年第28期7293-7297,共5页Science Technology and Engineering
基 金:陕西省自然科学基础研究计划项目(SJ08A26);中小企业技术创新基金(08C26226102372)资助
摘 要:无人机组合导航滤波器的设计需要考虑器件和外部环境不稳定带来的影响。同时在飞行过程中也面临着组合导航系统噪声和量测噪声统计特性不确定问题,从而导致滤波精度低、稳定性差,还有可能发散。采用常规卡尔曼滤波无法解决此问题。为此研究了一种基于UKF的自适应卡尔曼滤波算法。在系统噪声统计特性未知时,此算法能自动平衡状态信息与观测信息在滤波结果中的权比,实时调整状态向量和观测向量的协方差,从而提高系统的性能。仿真结果显示,使用自适应UKF算法与普通的UKF算法相比,可以获得更优的导航精度和稳定性。It is essential to consider the affect of circumstance and stability of apparatus when designing a practical filter for UAV integrated navigation, meanwhile which also faced with the uncertain problems of system noise and measurement noise statistical characteristics of combined navigation in the course of the flight, Leads to filter low accuracy, poor stability, and may diverge, and using conventional Kalman filter cannot solve this problem. So a kind of adaptive filtering algorithm based on the UKF is proposed, when the system noise statistical characteristics is unknown, adaptive UKF algorithm can balance automatically the right of the state information and observation in- formation in the filtering result, so that to real-time adjust the covariance of the state vector and observation vector, thereby improving system performance. The simulation results show: Compared with normal UKF algorithm, the adaptive UKF algorithm can obtained a better navigation accuracy and rapidity.
分 类 号:V249.4[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15